您的位置:15>15详情
返回列表

AI大模型带动存储变革 业界呼吁重视存力建设

眼下,AI大模型正重塑着千行百业,也包括与之息息相关的算力产业链。在AI芯片屹立风口之时,业内对存储芯片、存储设备的关注度也直线上升,高带宽存储、近存计算等概念大热。

大模型建立在数据和算力之上,而海量数据需要更强悍的存储性能,从而更好地释放算力,因此在大模型的推动下,存储产业正在新需求下升级变革。

相关领域专家呼吁关注存力的重要性,大模型时代,数据决定AI智能的高度。作为数据的载体,数据存储成为AI大模型的关键基础设施。一直以来,计算、存储和网络被视为数据中心三大件,它们是关系紧密的有机体系,分别对应着算力、存力和运力。如今在算力蓬勃发展的同时,存力正越来越受到重视。近年来国内建设了诸多算力中心,现在的新趋势是开始建设大量的存力中心。

大模型面临的四大挑战

打造AI大模型是一个复杂的系统过程,其间面临着不少挑战。在华为看来,企业在开发及实施大模型应用过程中存在四大挑战。

首先,数据准备时间长,数据来源分散,归集慢,预处理百TB数据需10天左右,这不利于系统的高效利用。

其次,如今大模型的规模越来越大,达到千亿甚至万亿的参数级,训练需要海量的计算资源和存储空间。比如多模态大模型以海量文本、图片为训练集,但是当前海量小文件的加载速度不足100MB/s,训练集加载效率低。

其三,大模型参数频繁调优,训练平台不稳定,平均约2天出现一次训练中断,需要Checkpoint机制恢复训练,故障恢复耗时超过一天。

最后,大模型实施门槛高,系统搭建繁杂,资源调度难,GPU资源利用率通常不到40%。比如,它需要非常专业的软件、硬件甚至是维护工程师来进行实施并进行后续的维护。

可以看到,大模型的到来,给数据和存储提出了新的要求。相关领域人士表示,在AI刚兴起的时候,针对小模型,很多客户会找一些服务器的本地盘来解决。但是随着大模型的兴起,需要一个外置的非常灵活扩展的存储。如果数据量载入过慢,会造成建设的算力都在闲置,所以需要一个不仅是外置的存储,而是一个极高性能的新品类和解决方案。

业界呼吁重视存力建设

数据显示,预计2025年中国数据量将从7.6ZB增至48.6ZB,超过美国成为全球第一。当前,全球各国都在加快制定国家数据战略,其中,存储技术和产业成为共同关注的战略重点。

虽然AI算力中心不断兴起,但是中国工程院院士、中国科学院计算技术研究所研究员倪光南指出,目前普遍对算力的理解有片面性,广义算力不仅包括算力,还包括存力、运力。当前中国算力中心的存力相对不足,存在重算力轻存力的倾向。

当前国内的存储发展还跟不上数据量的增长。根据倪光南提及的一组数据,中国单位GDP的数据存储量只有美国70%左右,而人均数据存储量,美国是中国的9倍。美国为212GB/人,中国约为25GB/人,说明中国数据存储产业大有可为、前景广阔。

在业界呼吁关注存力建设的同时,国内在政策面也有了更多支持计划。为进一步加快推动我国算力高质量发展,日前工信部新闻发言人赵志国表示,将出台指导算力基础设施高质量发展的政策文件,加大高性能智算供给,加强先进存储产品部署,开展算力网络优化行动,加快构建云边端协同、算存运融合的一体化、多层次的算力基础设施体系。

作者: 倪雨晴  来源: 《21世纪经济报道》